讯技光电公司首页 最新公告:2025年讯技课程安排发布啦! 黉论教育网校|English|苏州讯技|深圳讯技|联系我们|全站搜索
栏目列表
NEWSLETTER
最新发布

VirtualLab Fusion应用:不规

VirtualLab Fusion应用:F-Th

VirtualLab Fusion应用:氧化

VirtualLab Fusion应用:具有

VirtualLab Fusion应用:用于

VirtualLab Fusion应用:畸变

VirtualLab Fusion应用:场曲

VirtualLab Fusion应用:Ince

VirtualLab Fusion应用:色散

VirtualLab Fusion:系统建模

空间光调制器像素处光衍射的仿真
时间:2016-11-24 20:12来源:未知作者: infotek点击:打印
空间光调制器(SLM.0002 v1.1)
 
应用示例简述
 
1. 系统细节
光源
高斯光束
组件
反射型空间光调制器组件及后续的2f系统
探测器
视觉感知的仿真
电磁场分布
建模/设计
场追迹:
一个SLM像素阵列处光传播的仿真,仿真中包括了SLM像素间无功能间隔引起的衍射效应。
 
2. 系统说明
 
 
3. 模拟 & 设计结果
 
4. 总结
 
考虑SLM像素间隔来研究空间光调制器的性能。
 
第1步
将像素间隔引入到一个先前设计的用于光束整形的SLM透射函数。
 
第2步
分析不同区域填充因子的对性能的影响。
 
产生的衍射效应对SLM的光学功能以及效率具有重大影响。
 
应用示例详细内容
 
系统参数
 
1. 该应用实例的内容
 
 
2. 设计&仿真任务
 
由于制造和技术的原因,像素之间存在非功能间隔。这种典型的间隔会产生衍射效应,从而影响SLM的光学性能,并在接下来的工作中对其进行研究。
 
3. 参数:输入近乎平行的激光束
 
 
4. 参数:SLM像素阵列
 
 
5. 参数:SLM像素阵列
 
 
应用示例详细内容
 
仿真&结果
 
1. VirtualLab能够模拟具有间隔的SLM
由于可以嵌入组件,VirtualLab可以轻松的实现反射系统(如反射镜,2f系统等)。
内置的SLM模式可以实现从简单透射函数到包含像素和间隔的阵列的自动转换。
 
2. VirtualLab的SLM模块

为设置像素阵列,必须输入像素阵列尺寸和区域填充因子。
必须设置所设计的SLM透射函数。因此,需要输入文件SLM_Transmission_Function.ca2的路径。
 
3. SLM的光学功能
 
在第一步,我们可以研究SLM后的电磁场。
为此,将区域填充因子设置为60%。
首先,获得场(Ex方向)的振幅,分别显示了SLM像素及其间隔的影响。
 
所用文件: SLM.0002_Diffraction_Pixels_SLM_01_Nearfield.lpd
 
此处,场(Ex方向)的(Wrapped)位相如下图所示,其中所有的间隔的相位值都为一个常数值。
 
所用文件: SLM.0002_Diffraction_Pixels_SLM_02_2DGrating.lpd
 
4. 对比:光栅的光学功能
上述的像素效应可以用相似光学功能的2D周期结构的进行比较。
所示函数(Ex的振幅)相当于一个SLM,其像素提供一个常数位相函数。
通过这种光栅,能够将光衍射到几个衍射级次,衍射级次分布在x-和y-方向(由于二维光栅结构)。
级次越高振幅衰减越快,所以只有0级,1级以及2级贡献了主要的光强部分。
这意味着,对于SLM,我们所期望的光分布具有有较高的级次,其光强由区域填充因子决定。

所用文件: SLM.0002_Diffraction_Pixels_SLM_02_2DGrating.lpd
 
5. 有间隔SLM的光学功能
现在,基于像素阵列的区域填充因子,我们可以在傅里叶平面研究SLM的光学功能。
 
所用文件: SLM.0002_Diffraction_Pixels_SLM_03_2DGrating.lpd
 
下图显示了(Ex方向)光强分布,图中具有相同的振幅比率。
 
 
6. 减少计算工作量
 

 
采样要求:
至少1个点的间隔(每边)。
如在有效区域,用户指定60%区域填充因子,模块在激活区域计算5×5点的等间距采样。
 
采样要求:
同样,至少1个点的间隔。
假设指定90%区域填充因子,模块计算25×25点的等间距采样。
随填充因子的增大,采样迅速增加。
 
为优化大填充因子条件下的计算工作量,减小相关阵列尺寸是非常有效的方法。
如果被照明区域小于阵列尺寸(标记区域包含光强的90%),这种简化是非常适用的。
如果只考虑标记的范围,仅计算SLM的320×320个像素即可(SLM模块自动删除了透射函数边界)。
通过优化,计算工作量减少了4.7倍。
 

 
减小SLM阵列尺寸后计算所得的振幅分布几乎和全阵列一样。
 
7. 指定区域填充因子的仿真
 
由于间隔非常狭窄,Hamamatsu’s X10468 指定填充因子为98%,需要更多的采样点进行计算。
全阵列尺寸798×600像素将需要79992×60600个采样点,需要极高的计算量。
因此,可适当减小阵列尺寸到320×320像素,采样点数目为32320×32320。
在优化的帮助下,可对指定区域填充因子进行研究(该仿真仍需约256GB的内存)。
 

8. 总结
考虑SLM像素间隔来研究空间光调制器的性能。
 
第1步
将像素间隔引入到一个先前设计的用于光束整形的SLM透射函数。
 
第2步
分析不同区域填充因子的对性能的影响。
扩展阅读
扩展阅读
开始视频
该应用示例相关文件:
关于我们
公司介绍
专家团队
人才招聘
讯技风采
员工专区
服务项目
产品销售
课程中心
专业书籍
项目开发
技术咨询
联系方式
地址:上海市嘉定区南翔银翔路819号中暨大厦18楼1805室    邮编:201802
电话:86-21-64860708/64860576/64860572  传真:86-21-64860709
课程:course@infotek.com.cn
业务:sales@infotek.com.cn
技术:support@infotek.com.cn
官方微信
扫一扫,关注讯技光电的微信订阅号!
Copyright © 2014-2024 讯技光电科技(上海)有限公司, All Rights Reserved. 沪ICP备10008742号-1