在数字上更方便。代替了方程(2)和(4)中的两个FFT, 这两个FFT被用于处理标准SPW算子中数值工作量的巨大光场,修改后的算子执行三个简单的FFT。尽管如此,一个额外的FFT步骤是必要的:二次相位项的解析处理。式(15)导致新算符的数值性能提升。与SPW传播算子相反,增大的传播距离主要是给半解析SPW算子引入一个慢振荡相位项。这种较慢的相位振荡可以减少采样工作。
然而,在等式(8)中由高阶相位函数 引起的相位振荡仍会随着距离的增加能变大。Mansuripur[6]在其工作中已经提到,通过对kz使用更方便的抛物线拟合方法,而不是如等式(6)中的泰勒展开,可以显著减少高阶的影响。根据抽样原理[15],我们不应关注不是高阶函数本身而是其梯度 的最大绝对值。通过最小化其梯度 最大值以达到最佳的数值效果。
基于这一思想,Mansuripur在其出版物[6]的附录A中提出了一种先进的拟合方法。然而,它只是优化抛物线的斜率,而不是顶点偏移。此外,这项技术还需要解一个方程,包括不同指数的幂函数,这只能用数值方法来实现。
一种抛物线拟合方法可以得到更强大的分析方法,van der Avoort等人使用了这种方法[7]在完全不同的背景下。据此,球相函数可以写成
相对于最大空间频率Kmax的绝对值进行归一化。式(17)的两个拟合参数由[7]得到
图3(a)说明了用泰勒展开式的前两个项(式(6)、式(17)的Avoort拟合和Mansuripur的拟合技术对kmax的一维例子的球面相位函数的拟合。相应的高阶相位函数;如图3(b)所示。在这里,Avoort拟合的特征是最小化梯度的曲线,这使得所有高阶相位函数的影响最小。因此,Avoort拟合能做到在公式(8)中仅需求对修改后的角谱进行最小努力的采样。请注意,在低空间频率情况下的不完全Avoort拟合与采样无关,因为它的梯度很小。与Mansuripur拟合相比,本文给出了Avoort拟合的解析表达式。
到目前为止,由式(3)的球形传播核引起的球面相位项用式(21)进行了解析处理。通常情况下,对于直径较小,因而发散较大的场,球面传播核的采样占主导地位。接下来,我们转向光场,在传播之前,光场已经有了一个很强的球面相位。例如,这出现在透镜系统的出射光瞳中。在这种情况下,初始谐波场包含一个强球形相位,并且可以有效地利用半解析SPW传播算子对球相项的数值传播进行反演。为此,公式(21)重新排列为
图3 根据Taylor、Avoort和Mansuripur拟合球面相位函数kz。
(a)一维球函数及其相应的抛物线拟合曲线。
(b)(b)高阶相位函数,从球面函数中减去抛物线拟合函数。
A*B表示卷积积分
......
全文内容下载:
|